
 Vocoder – Voice Programming

Binh An Pham, M Rachel Van Pelt, Steven Tran

Testing Document

I. Introduction

This document serves as the plan for testing all software artifacts as well as the reporting of

test results. This document provides the test plan and test procedures for carrying out various

levels of testing on the Vocoder product and to ensure the product runs without errors and to

meet the customer requirements at an accredited level.

II. Test Item
● application.py

● voice_recognition.py

● compiler.py

III. Intended Audience
● Developers

● Testers

● Customers

IV. Scope
In this testing document, all the core functionalities of the system will be tested.

V. Definitions and acronyms
● test commands: {1.create array, 2.create else statement, 3.create else-if statement, 4.create

if statement, 5.create while loop, 6.create for loop, 7.return statement, 8.assign old variable,

9.create new variable,10.copy text, 11.select block, 12.select line, 13.select word, 14.cut

text, 15.move cursor, 16.paste text, 17.redo command, 18.undo command, 19.print

statement, 20.print variable, 21.create function, 22. indent cursor, 23. insert characters}

● tex, tex2, tex3, tex4: references to information being displayed in the GUI windows; tex =

text editor window, tex2 = command(s) received, tex3 = command manager, tex4 = system

output

● GUI outputs - command manager window will display the processes that the system

completed, system output window will display the status of the system processes,

command(s) received window will be updated to show the user what commands have been

called, text editor window will display users intended code

VI. Environmental needs

Hardware

● Laptop or Desktop PC

● Microphone

Software

● Python 3.8

● pocketsphinx

● IDE with Python support

V. Features to be tested

All the requirements outlined in the requirement definition document will be tested as new features.

VI. Features not to be tested

Following features shall not be tested because they are either in executable or uncontrollable.

[we do not have anything at this time]

VII. Approach

Unit test. Developers are responsible for unit testing. The implementation of each module and individual

component will be verified separately. List all the units implemented as separate units and discuss how are

you planning to test them?

 The user interface includes: start button, end button, recording indicator light, commands

received text box, system output text box, command manager output box, text editor box, command line

box, drop down menus. First level functions include: getVoiceInput(), phraseMatch(), test_compiler(),

getClosestString(), text2int(), showSet(), confirm(), listen(), chooseLanguageModel(),

recordVoiceLines(), and trainLanguageModel(). Second level functions include: createNewVariable(),

assignOldVariable(), returnStatement(), createForLoop(), getCondition(), createWhileLoop(),

createIfStatement(), createElseIfStatement(), createElseStatement(), createArray(), moveCursor(),

selectWord(), selectLine(), selectBlock(), copyText(), pasteText(), cutText(), printStatement(),

printVariable(), createDef(), getSymbols(), insertChars(), changeLanguageModel(), recordingVoice(),

getPrevLine(), getNextLine(), playWavFile(), recWavFile(), checkNameButton(), and

trainModelButton(). We will be using the equivalence partition technique to test each function for

Pass/Fail. The second level functions rely on the first level functions and thus the first level functions are

regarded as priority 1 for testing before moving on to the second level functions. The user interface units

will be monitored visually for errors and used for indications of error in the first and second level

functions in addition to the terminal outputs from running the program.

Integration test. After the unit test is passed above the defined quality threshold, testers will execute the

integration test cases. After all the modules are integrated, it’s crucial to test the product as a black-box.

List the end-to-end scenarios that will be tested to ensure the communication functionality.

 We referred back to our Sequence Diagram and followed each possible path as a potential process

to test. For example: [Start recorder, speak command “return statement”, verify command, speak command

inputs, verify inputs, end recording] would be a complete set of actions to test for Pass/Fail. Upon

completion of the Unit tests listed in the Acceptance Test Procedure below, we have concluded that the

integration test has passed all intended scenarios for the system.

Positive and negative testing design technique. This approach will be combined with the unit test and the

integration test. Test cases are designed in sunny day scenarios, which ensure that all functional

requirements are satisfied. What’s more, rainy day test cases will also be covered to show how the system

reacts with invalid operations. List the positive and negative test cases that you will use with your system.

 Positive cases included the planned flow of user interactions listed in our requirements document.

Negative cases for our particular project included a user not speaking after clicking the start button, a user

speaking commands and inputs not included in the list of valid commands, or a user clicking outside of the

user interface.

System test. System testing has a particular purpose: to compare the system or program to its original

objectives. Describe how you will perform this test with your system.

 We referred back to our design documentation as a checklist against the system to verify if the

system was built correctly and if the correct system was built for the proposed need of the user. After

reviewing the Project Proposal and Software Requirements Specifications, we feel we have accomplished

both of these, therefore passing the System test.

Acceptance test. Acceptance testing is the process of comparing the program to its initial requirements and

the current needs of its end users.

VIII. Acceptance test procedure

TEST ID

[Use case

derived

from]

Pri

o

rit

y

Feature Description

Test Case

Description
Input

Expected

Output

Actual

Output

GVI 1

getVoiceInput() - convert

spoken command into a

string, save in variable
audioToText
and return that string

speak a command

after clicking start

button

(see commands

1-18 in part V

above) such as

“create variable”

string of spoken

command saved

in variable -
audioToText

pass

PM 1

phraseMatch() - calls the

getClosestString function to

find the best matching

function to the input

speak a command

after clicking start

button

Test Commands

1-18 from part V

such as “create

variable”

related function is

called based on

translated

command

pass

GCS

1

getClosestString() - takes

in string and a list as input

and finds the item in the

string that best matches the

input string and returns it

speak a command

after clicking start

button

Any input string,

list to find

closest match

from

invalid command

would be “test

something”

If input list has a

match, returns the

element that best

matches the input

string

All other

commands, Print

out that “no

matching phrase

was found”

pass

pass

T2I

1

text2int() - takes in a string as

input and returns a string

containing the numerical

form of the input string

speak a command

and give input

using numbers

spoken word

such as “zero” or

“one hundred

twenty four”

If input string

contains only the

word form of a

valid number:

pass

 Returns the

numerical form

of that number

If input string

contains a non-

valid word:

Returns an error

SS

1

showSet() - displays a list of

variables that are currently

stored in

setOfVariableNames

Call the showSet

function when

prompted for a

command

No input needed Returns a list of

the variables

currently saved in

setOfVariableNa

mes to the system

output window

pass

C 1

confirm() - calls

getVoiceInput and prompts

the user to reply “yes” or

“no” to confirm the data

collected

Call any command

that takes in data

“yes/no” If closest match is

“yes”: Proceed

with function

If closest match is

“no”: Retake data

and confirm with

user again

pass

L 1

listen() Microphone

input

If a valid voice

input is

recognized, pass

with no errors,

else throw invalid

voice input

pass

GS 1

getSymbols() issue “insert

characters”

command and test

strings that include

symbols ()[]{},.\<

spoken string converts spoken

keyboard

symbols from

word string to the

symbol desired

pass

GC 1

getCondition() issue “while

loop”,”if/elseif”

command and test

strings that include

x<y, x==6, etc

spoken string converts spoken

conditions for a

loop from word

string to the

symbols desired

pass

CNV 2

createNewVariable() say “create new

variable” after

clicking the start

button. say name

of variable,

confirm yes/no to

prompted

questions, give

initial value to

variable

a = 1

my_var = 1

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

AOV 2

assignOldVariable() say “assign old

variable” after

clicking the start

a = 2

a = b + 2

c = 3

popup window

guides user for

inputs needed,

pass

button. say name

of variable,

confirm yes/no to

confirmation, give

new value to

variable, verify

GUI output

updated after

popup window is

closed, if no

match, create new

variable, warn

user if using

unassigned

variables in

equation

RS 2

returnStatement() say “return

statement” after

clicking the start

button. say none or

expression, verify

a

none

3

a+3

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CFL 2

createForLoop() Say “create for

loop” after clicking

the start button,

give the number of

loops, looping

variable name, and

then verify

for x in range(5): popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CIS 2

createIfStatement() Say “create if

statement” after

clicking the start

button, give the

expression to be

tested, verify

a<b

a<=b

a!=

a==b

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CMDW 3
commands received window

on the GUI

coincides with

issuing commands

Any voice input a history of user

issued commands

pass

TEXW 3

text editor window on the

GUI

“ ” Any text input

from keyboard or

voice input from

user

results of

completed

commands and

edits made by the

user

pass

SYSW 3

system output window on

the GUI

“ ” activated by

issuing

commands

history of system

status’

pass

MGRW 3

command manager window

on the GUI

“ ” activated when

user issues a

command

history of system

processes

pass

TERW 3

terminal window on the GUI Text in the text

editor window

Return the

standard Python

output for the

code created in

the text editor

window

pass

RI 4

recording indicator click start/end left mouse button turn red when

start button is

clicked, turn gray

when end button

is clicked

pass

PS 2

print statement call “print

statement”, give

statement, verify

spoken word(s)

of desired

statement

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

PV 2

print variable call “print

variable”, give

variable, verify

spoken word(s)

of desired

variable

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CF 2

create function call “create

function” after

clicking the start

button, give the

name of function,

verify

spoken word(s)

of desired

function name

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CWL 2

create while loop call “create while

loop”after clicking

the start button,

give the expression

to be tested, verify

a<b

a<=b

a!=

a==b

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

CEIF 2

create Else-If statement Say “create else if

statement” after

clicking the start

button, give the

expression to be

tested, verify

a<b

a<=b

a!=

a==b

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

STB 1

start button click start button left mouse button indicator turns

red, system listens

for user input

pass

ENB 1

end button click end button left mouse button indicator turns

gray, if not

already, terminal

shows output of

users executed

code

pass

CES 2

create Else statement Say “create else

statement done”

after clicking the

start button

n/a GUI output

updated

pass

CA 2

create Array call “create

array”after clicking

the start button,

give name and

values of new

array, verify

cars = ["Ford",

"Volvo",

"BMW"]

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

MC 2

move cursor call “move

cursor”after

clicking the start

button, give values

of new location,

verify

1,0

4,4

popup window

guides user for

inputs needed,

GUI output

updated after

popup window is

closed

pass

SW 2

select word call “select

word”after clicking

the start button,

give values of

selection begin and

end, verify

2,2 and 2,5 popup window

guides user for

inputs needed,

GUI updated

after popup

window is closed

pass

SL 2

select line call “select

line”after clicking

the start button,

give line number,

verify

2 popup window

guides user for

inputs needed,

GUI updated

after popup

window is closed

pass

SB 2

select block call “select

block”after

clicking the start

button, give line

number of begin

and end, verify

3 and 4 popup window

guides user for

inputs needed,

GUI updated

after popup

window is closed

pass

CT 2

copy text call “copy

text”after clicking

the start button and

having a selection

made

n/a selected text is

added to the

clipboard

pass

PT 2

paste text call “paste text”

after clicking the

start button and

having a selection

copied

n/a clipboard data is

pasted at cursor

location

pass

CUT 2

cut text call “cut text” after

clicking the start

button and having

a selection made

n/a selected text is

removed from the

text editor

window and

pass

added to the

clipboard

UC 2

undo command call “undo” after

clicking the start

button

n/a last user action in

the text edit

window is

reversed

pass

RC 2

redo command call “redo” after

clicking the start

button

n/a if “undo” was the

last user action,

the user action is

restored

pass

IC 2

indent cursor call “indent” after

clicking the start

button

n/a 4 spaces are

added and the

cursor is moved

forward in the

text edit window

pass

ICHAR 2

insert character(s) call “insert

characters” after

clicking the start

button

spoken

character(s)

including +, =,

{}, [], < >, etc

spoken

character(s) of

desired string are

added at cursor

location

pass

CLM 3

chooseLanguageModel()

allows the user to select from

a list of given choices to use

for the language model

click the “voice”

menu button then

click on “choose

language model”

n/a displays a menu

with available

language models

for the user to

choose from

pass

CHLM 3

changeLanguageModel() -

changes the language model

to the choice that the user

selected

while in the menu

for

chooseLanguageM

odel(), click on one

of the options

available

n/a copies the files

from the chosen

language model

directory over to

the directory

being used for

audio parsing

pass

RVL 3

recordVoiceLines() - gives

the user a choice to choose

which training model to use

to record voice lines

click the “voice”

menu button then

click on “record

voice lines”

n/a displays a list of

available training

models for the

user to choose

from

pass

RV 3

recordingVoice() - takes the

user’s choice and displays the

relevant text for the user to

say and has buttons for

getting the previous and next

line, a record button, and play

button

while in the menu

for

recordVoiceLines()

, click on one of

the options

available

n/a displays a

window that pulls

text from the

needed file in the

training model

directory for the

user, and allows

the user to click

on the previous,

record, play, and

next buttons

pass

GPL 3

getPrevLine() - gets the data

for the previous line from the

transcription file and displays

it on the window

while in the menu

for

recordingVoice(),

click on the

“previous” button

n/a retrieves the text

for the previous

line and displays

it in the relevant

window, if the

displayed line is

already the first

one in the list, a

message pops up

saying so

pass

GNL 3

getNextLine() - gets the data

for the next line from the

transcription file and displays

it on the window

while in the menu

for

recordingVoice(),

click on the “next”

button

n/a retrieves the text

for the nextline

and displays it in

the relevant

window, if the

displayed line is

already the last

one in the list, a

message pops up

saying so

pass

PWF 3

playWavFile() - retrieves the

relevant wav file that is being

displayed and plays it to the

audio output

while in the menu

for

recordingVoice(),

click on the “play”

button

n/a plays the audio

from the wav file

displayed in the

window, if there

is no wav file

available, a

message pops up

saying so

pass

RWF 3

recWavFile() - records the

user’s audio input for a

predefined amount of time

and saves it at the relevant

path

while in the menu

for

recordingVoice(),

click on the

“record” button

n/a records the user’s

audio input and

saves it to the

correct location,

if there is a file

with the same

name already

there, it will

overwrite it

pass

TLM 3

trainLanguageModel() -

allows the user to create a

new language model with a

custom name and a choice

from which training model to

adapt it from

click on the

“voice” menu

button then click

on “train language

model”

n/a displays a

window that

contains a text

field for a

language model

name and a list of

available training

models

pass

CNB 3

checkNameButton() - checks

to see if a directory already

exists within the

AcousticModels directory

while in the menu

for

trainLanguageMod

el(), click on the

any string input displays a

message box

informing the

user if it is a pre

existing directory

pass

“check

availability” button

TMB 3

trainModelButton() - takes in

the user’s choice for name

and training model to create a

new language model

while in the menu

for

trainLanguageMod

el(), click on the

“train the language

model!” button

any string input,

training model

choice

trains a language

model using the

chosen training

model

pass

DDM 4

drop down menus click on File, Edit

Voice or Help to

see drop down

options and click

on the desired one

left mouse button activates the

process that was

clicked

pass

Where:

● Test ID is a unique identifier for the test case. The unique identifier should relate back to

the particular requirement the test case is verifying.

● Feature Description should clearly describe the feature that is used to run the test case.

● Test Case Description should clearly document the steps that need to be done in order to

run the test case.

● Input should identify the set of valid inputs to be used to run the test case

● Expected results is a statement of what should happen when the test case is run.

● Actual results are an indication of whether the test case is currently passing or failing when

it is run. The actual results could be recorded simply as “Pass” or “Fail.” However, it is

also helpful to describe what happened in cases where a test case fails.

Ultimately, your customer should agree to the test case. When test cases are written so specifically,

often requirements understanding is enhanced.

IX. Item pass/fail criteria

● The result works as what specified in output => Pass

● The system doesn't work or not the same as output specification => Fail

X. Summary

Using the equivalence partition technique we have been able to complete the testing of our code

and throughout the testing process we made the necessary adjustments to the implemented functions and

added more that we discovered would benefit the user. We continued to make updates to this testing

document as more functions were implemented or as more changes occured in the code. It was our goal to

make this system user friendly by regularly inspecting the system for errors and using all previously written

documentation in the creation phase to make sure we stayed in line with the specifications. After analyzing

the system using the various methods discussed in this paper, we feel more confident in saying that we

achieved that goal.

